[tex]\bf \textit{Law of sines}
\\ \quad \\
\cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c}\\\\
-----------------------------\\\\
\cfrac{sin(J)}{9.1}=\cfrac{sin(97^o)}{11}\implies sin(J)=\cfrac{9.1\cdot sin(97^o)}{11}
\\\\\\
\textit{now taking }sin^{-1}\textit{ to both sides}
\\\\\\
sin^{-1}\left[ sin(J) \right]=sin^{-1}\left( \cfrac{9.1\cdot sin(97^o)}{11} \right)
\\\\\\
\measuredangle J=sin^{-1}\left( \cfrac{9.1\cdot sin(97^o)}{11} \right) [/tex]