Respuesta :
verteical is infinite rise/run or when the denomenator of dy/dx is 0
take derivitive, implicit differntation
3x^2+y+x(dy/dx)-2y(dy/dx)=0
3x^2+y=2y(dy/dx)-x(dy/dx)
[tex] \frac{3x^2+y}{2y-x}= \frac{dy}{dx} [/tex]
find when denomenator is equal to 0
2y-x=0
2y=x
solve
subsitute 2y for x
(2y)^3+2y(y)-y^2=10
8y^3+2y^2-y^2=10
8y^3+y^2=10
at aprox y=1.03712
and
2y=x
2(1.03712)=x=2.07424
at about x=2.07424
take derivitive, implicit differntation
3x^2+y+x(dy/dx)-2y(dy/dx)=0
3x^2+y=2y(dy/dx)-x(dy/dx)
[tex] \frac{3x^2+y}{2y-x}= \frac{dy}{dx} [/tex]
find when denomenator is equal to 0
2y-x=0
2y=x
solve
subsitute 2y for x
(2y)^3+2y(y)-y^2=10
8y^3+2y^2-y^2=10
8y^3+y^2=10
at aprox y=1.03712
and
2y=x
2(1.03712)=x=2.07424
at about x=2.07424
The value of [tex]x[/tex] would be as follows:
[tex]2.074[/tex]
What is the value of x?
Given that,
Equation:
[tex]x^3+xy-y^2=10[/tex]
As we know,
When [tex]dy/dx = 0,[/tex] the vertical becomes infinite
Through derivative through differentiation,
So,
[tex]3x^2+y+x(dy/dx)-2y(dy/dx)=0[/tex]
[tex]3x^2+y=2y(dy/dx)-x(dy/dx)[/tex]
⇒ [tex](3x^2 + y)/(2y-x) = dy/dx[/tex]
Now, we will determine the situation when the [tex](2y - x)[/tex] [tex]= 0[/tex]
By putting the value [tex]2y[/tex] instead of [tex]x[/tex],
[tex](2y)^3+2y(y)-y^2=10[/tex]
by solving this, we get
[tex]y=1.03712[/tex]
by putting this [tex]y's[/tex] value,
[tex]2y=x[/tex]
[tex]2(1.03712)=x\\=2.074[/tex]
∵ [tex]x = 2.074[/tex]
Learn more about "Tangent Line" here:
brainly.com/question/17060643