Which values of a and b make the equation true? (2xy)^4 ---------- =4x^a (y^b) 4xy
A)a = 0, b = 0
B)a = 3, b = 3
C)a = 4, b = 4
D)a = 5, b = 5

Respuesta :

Answer:

B) a = 3, b = 3 .

Step-by-step explanation:

Given : [tex](2xy)^{4}[/tex] = [tex]4x^{a} (y^{b})4xy[/tex].

To find : Which values of a and b make the equation true.

Solution : We have given that [tex](2xy)^{4}[/tex] = [tex]4x^{a} (y^{b})4xy[/tex].

By exponential  same base rule :[tex]x^{n} x^{m} = x^{m+n}[/tex] if base are same then power will be add.

[tex]2^{4} x^{4} y^{4}[/tex] = [tex]16x^{a+1} y^{b+1}[/tex].

Solving exponent

16[tex]x^{4} y^{4}[/tex] =  [tex]16x^{a+1} y^{b+1}[/tex].

On equating x variable

[tex]x^{4}[/tex] =  [tex]x^{a+1} [/tex].

By exponent rule : if [tex]x^{m}[/tex] =  [tex]x^{n} [/tex] then m =n.

So, 4 = a+1

On subtracting by 1 both sides

a = 3.

On equating y variable ,

4 = b+1

On subtracting by 1 both sides

b = 3 .

Therefore, B) a = 3, b = 3 .

The values of a and b that make the equation [tex](2xy)^4=4x^ay^b(4xy)[/tex] to be true are a = 3, b = 3

Solving polynomial equations

The given equation is:

[tex](2xy)^4=4x^ay^b(4xy)[/tex]

Expanding the left hand side, we have:

[tex]16x^4y^4=4x^ay^b(4xy)[/tex]

Simplify the right hand side

[tex]16x^4y^4=16x^{a+1}y^{b+1}[/tex]

Compare the left hand side with the right hand side

a  +  1  =  4

a  =  4  -  1

a  =  3

b  +  1  =  4

b  =  4  -  1

b  =  3

Therefore, the values of a and b that make the equation [tex](2xy)^4=4x^ay^b(4xy)[/tex] to be true are a = 3, b = 3

Learn more on polynomial equations here: https://brainly.com/question/2833285