Respuesta :
[tex]t_n=19-18(n-1)[/tex]
[tex]t_{n-1}=19-18(n-2)[/tex]
[tex]\implies t_n-t_{n-1}=-18(n-1)+18(n-2)[/tex]
[tex]\implies t_n=t_{n-1}-18n+18+18n-36[/tex]
[tex]\implies t_n=t_{n-1}-18[/tex]
So the recursive formula is
[tex]\begin{cases}t_1=19\\t_n=t_{n-1}-18&\text{for }n>1\end{cases}[/tex]
[tex]t_{n-1}=19-18(n-2)[/tex]
[tex]\implies t_n-t_{n-1}=-18(n-1)+18(n-2)[/tex]
[tex]\implies t_n=t_{n-1}-18n+18+18n-36[/tex]
[tex]\implies t_n=t_{n-1}-18[/tex]
So the recursive formula is
[tex]\begin{cases}t_1=19\\t_n=t_{n-1}-18&\text{for }n>1\end{cases}[/tex]
Answer:
[tex]t_1= \text{19 for n =1}[/tex]
[tex]t_n=t_{n-1}-18 \text{ for n }> 1[/tex]
Step-by-step explanation:
Given : General term of arithmetic sequence : [tex]t_n=19-18(n-1)[/tex]
To Find: the recursive formula of the sequence
Solution :
[tex]t_n=19-18(n-1)[/tex]
To find the recursive formula of the sequence .
[tex]t_{n-1}=19-18(n-1-1)[/tex]
[tex]t_{n-1}=19-18(n-2)[/tex]
So, the recursive formula is :
[tex]t_n-t_{n-1}=19-18(n-1)-[19-18(n-2)][/tex]
[tex]t_n-t_{n-1}=19-18n+18-{19-18n+36][/tex]
[tex]t_n-t_{n-1}=19-18n+18-19+18n-36[/tex]
[tex]t_n-t_{n-1}=-18[/tex]
[tex]t_n=t_{n-1}-18[/tex]
Hence the recursive formula of the sequence is :
[tex]t_1= \text{19 for n =1}[/tex]
[tex]t_n=t_{n-1}-18 \text{ for n }> 1[/tex]