Respuesta :
so hmmm check the picture below
the leading term's coefficient for that quadratic is negative, meaning is opening downwards
so.. hmm where's the vertex anyway? well
[tex]\bf \textit{vertex of a parabola}\\ \quad \\ h=-16t^2+128t\\\\\\ \begin{array}{lccclll} h=&-16t^2&+128t&+0\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right)[/tex]
so,the cannonball reaches a maximum height of [tex]\bf {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}[/tex]
the leading term's coefficient for that quadratic is negative, meaning is opening downwards
so.. hmm where's the vertex anyway? well
[tex]\bf \textit{vertex of a parabola}\\ \quad \\ h=-16t^2+128t\\\\\\ \begin{array}{lccclll} h=&-16t^2&+128t&+0\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right)[/tex]
so,the cannonball reaches a maximum height of [tex]\bf {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}[/tex]
