sleenv
contestada

Evaluate the integral by changing to polar coordinatesye^x dA, where R is in the first quadrant enclosed by the circle x^2+y^2=25

Respuesta :

[tex]\displaystyle\iint_Rye^x\,\mathrm dA=\int_{\theta=0}^{\theta=\pi/2}\int_{r=0}^{r=5}r^2\sin\theta e^{r\cos\theta}\,\mathrm dr\,\mathrm d\theta[/tex]

which follows from the usual change of coordinates via

[tex]\begin{cases}\mathbf x(r,\theta)=r\cos\theta\\\mathbf y(r,\theta)=r\sin\theta\end{cases}[/tex]

and Jacobian determinant

[tex]|\det J|=\left|\begin{vmatrix}\mathbf x_r&\mathbf x_\theta\\\mathbf y_r&\mathbf y_\theta\end{vmatrix}\right|=|r|[/tex]

Swap the order, so that the integral is

[tex]\displaystyle\int_{r=0}^{r=5}\int_{\theta=0}^{\theta=\pi/2}r^2\sin\theta e^{r\cos\theta}\,\mathrm d\theta\,\mathrm dr[/tex]

and now let [tex]\sigma=r\cos\theta[/tex], so that [tex]\mathrm d\sigma=-r\sin\theta[/tex]. Now, you have

[tex]\displaystyle\int_{r=0}^{r=5}\int_{\sigma=0}^{\sigma=r}re^\sigma\,\mathrm d\sigma\,\mathrm dr=\int_{r=0}^{r=5}r(e^r-1)\,\mathrm dr=4e^5-\dfrac{23}2[/tex]