Respuesta :

The coefficient of the second term is 18.

What you do is you FOIL the terms:
[tex](3x+3)(3x+3)\\
Multiply\ the\ first\ terms\ together:\\
3x*3x=9x^{2}\\
Then\ the\ outer\ terms:\\
3x*3=9x\\
Next,\ the\ inner\ terms:\\
3x*3=9x\\
Finally,\ multiply\ the\ last\ terms:\\
3*3=9\\
Putting\ the\ terms\ together:\\
9x^{2}+9x+9x+9=9x^{2}+18x+9\\\\
Since\ (3x+3)^{2}=9x^{2}+Bx+9=9x^{2}+18x+9,\ then \ B=18.[/tex]
Answer:  " 18 " .
_______________________
Explanation:
_____________________
  (3x + 3)²
 
 =   (3x + 3) (3x + 3)  ;
 
 =  Using "FOIL" method:  "First, Outer, Inner, and Last" terms ;
_____________________________________________________
First terms:  3x* 3x = 9x² ;
Outer terms:  3x * 3 = 9x ;
Inner terms:  3 * 3x = 9x ;
Last terms:   3 * 3 = 9 ;
________________________________
   So,  we have:  " 9x² + 9x + 9x + 9" ;
______________________________
      Combine the "like forms" to simplify further:
_______________________________________
          The "like terms" are:  + 9x + 9x = 18x ; 
_______________________________________
 Rewrite the expression:  
_______________________________________
          " 9x²  + 18x +  9 ";
_________________________________________
We want to find the coefficient of the second term in the trinomial given:
_________________________________________
          " 9x² + Bx + 9 "  ; 
_________________________________________
The coefficient of the second term in this polynomial is: "B" ;
_________________________________________
                B = 18 .
_________________________________________
The answer is:  " 18 " .
_________________________________________