Respuesta :

There are no real roots to this equation.
Mathematically speaking,if the usage of imaginary numbers are not involved,there will be no solutions to x.
You can tell by using discriminant,b^2-4ac
If discrimination is less than zero,there are no real roots to the equation.

Answer:

[tex]x=\frac{1+i\sqrt{107} }{6}[/tex]

[tex]x=\frac{1-i\sqrt{107} }{6}[/tex]

Step-by-step explanation:

[tex]3x^2 - x + 9 = 0[/tex]

To solve for x we use quadratic formula

[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex]

The value of a=3, b=-1 and c=9

Plug in the values in the formula and solve for x

[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a}[/tex]

[tex]x=\frac{1+-\sqrt{(-1)^2-4(3)(9)} }{2(3)}[/tex]

[tex]x=\frac{1+-\sqrt{-107} }{6}[/tex]

The value of square root (-1) is 'i'

[tex]x=\frac{1+i\sqrt{107} }{6}[/tex]

[tex]x=\frac{1-i\sqrt{107} }{6}[/tex]