Respuesta :

The answer is:  "approximately 62 m² " . 
_______________________________________________________
Explanation:
_______________________________________________________
     We find the dimensions ("L * w") ; which are length and width, respectively;  to find the area of the entire rectangle (assuming that "shaded" or "non-shaded" regions are irrelevant).

The area of the rectangle, "A = L * w" ;  
_________________________________________________
         If EACH of the circles has a Circumference, "C = 37.7 m" ;  we need to find the diameter, "d",  of one of the circles, and multiply that value by "2" ; to get the length, "L" , of the rectangle.
_________________________________________________
Note:  C =  π * d ;

Use "3.14" as an approximation for "π";  to find the diameter, "d" .

 Since;  "C = π * d " ;  

Rearrange the equation to isolate "d" on one side of the equation;  then plug            in our known values to solve for "d" ;
________________________________________
           →  C = π * d  ;

         Divide each side of the equation by "π"; to isolate "d" on one side of the equation ;
  
  →   C / π = (π * d) / π ;
 
to get:  C / π = d ;  ↔  d = C / π ;
  
 →  d = C / π = (37.7 m) / (3.14) ;
   
to get:  
        
       d = 12.0063694267515924 m 

Now, the length of the rectangle, "L = 2*d = 2 * 12 m = 24 m ; 

The width of the rectangle, "w" = "d" = 12 m ; 
_____________________________________________________
The total area of the rectangle (regardless shade or unshaded regions):
______________________________________________________
              A = L * w  =  24 m  * 12 m  = (24 * 12) m²  = 288 m² .
_______________________________________________________
          Now, we find the area of one of the circles; multiply that value by "2" ; {since there are two identical-area circles.}.

         {Note that the circles within the rectangle are "unshaded".}.

       Then subtract this "total value (area)" ;  from "288 m² " (the total area of the triangle) ; and we are left with the area of the shaded regions.
___________________________________________________________
        So;  The area of one circle:  

                          →  " A = π r² " ;                                                                                                                           in which:   A = area of the circle ; 
                                                                   π = 3.14 (approximation); 
                                                                    r = length of radius ;
_________________________________________________________
              The radius, "r" , equals "1/2" the length of the diameter, "d" ;

          So;  " r = d / 2 = (12 m / 2) = 6 m " ;
______________________________________________
       →  A = π r²
       →  A = (3.14) * (6 m)²  ;
______________________________________________
  →  {Note:  " (6 m)²  = 6m * 6m = 36 m² . " }.
_______________________________________________
       →  A  =  (3.14) * (6 m)² ;
   
                 =  (3.14) * (36 m²) ;
 
                 =  [ (3.14) * (36) ]  m² ;
 
                 =  113.04  m² ;
______________________________________________
        Now, since there are 2 (TWO) circles of equal area ;
multiply this value by "2" ;
_____________________________________________
                 2 * (113.04  m²) = 226.08 m² ; round to 226 m² ;
__________________________________________________
    Now, subtract this value, FROM the value of the TOTAL AREA of this rectangle, to get our answer — "the area of the shaded region of the rectangle / figure" .
_____________________________________________________
            288 m²  −  226 m²  =  62 m² .
_____________________________________________________
              →  The answer is:  " approximately  62 m² " .
_____________________________________________________