[tex]\bf cos(x)=\cfrac{8}{17}\cfrac{\leftarrow adjacent=a}{\leftarrow hypotenuse=c}
\\\\\\
\textit{using the pythagorean theorem}
\\\\\\
c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b\implies \sqrt{17^2-8^2}=b\implies 15=b\\\\
-----------------------------\\\\
sin(y)=\cfrac{12}{37}\cfrac{\leftarrow opposite=b}{\leftarrow hypotenuse=c}\\\\\\
\textit{using the pythagorean theorem}
\\\\\\
c^2=a^2+b^2\implies\sqrt{c^2-b^2}=a\implies \sqrt{37^2-12^2}=a\implies 35=a[/tex]
[tex]\bf \\\\
-----------------------------\\\\
sin({{ \alpha}} + {{ \beta}})=sin({{ \alpha}})cos({{ \beta}}) + cos({{ \alpha}})sin({{ \beta}})\qquad thus
\\\\\\
sin(x+y)=sin(x)cos(y)+cos(x)sin(y)
\\\\\\
sin(x+y)=\cfrac{15}{17}\cdot \cfrac{35}{37}+\cfrac{8}{17}\cdot \cfrac{12}{37}
\\\\\\
sin(x+y)=\cfrac{525}{629}+\cfrac{96}{629}\implies sin(x+y)=\cfrac{525+96}{629}
\\\\\\
sin(x+y)=\cfrac{621}{629}[/tex]