Respuesta :
[tex]\sin\left(2\cos^{-1}\dfrac7{25}\right)=2\sin\left(\cos^{-1}\dfrac7{25}\right)\cos\left(\cos^{-1}\dfrac7{25}\right)[/tex]
[tex]=2\dfrac{24}{25}\dfrac7{25}[/tex]
[tex]=\dfrac{336}{625}[/tex]
[tex]=2\dfrac{24}{25}\dfrac7{25}[/tex]
[tex]=\dfrac{336}{625}[/tex]
Answer:
0.5377
Step-by-step explanation:
the correct expression can be written as
[tex]sin(2 cos^{-1}\frac{7}{25})[/tex]
[tex]cos^{-1}\frac{7}{25}[/tex]= 73.739°
now sin(2\times73.739)= sin(147.47)
= 0.5377
therefore the exact value of the expression
[tex]sin(2 cos^{-1}\frac{7}{25})[/tex]= 0.5377
please pay attention on each step, hope this helps.