I kinda forgot my trig (kinda)
full explanations required, (including citation of the identity)
3 questions

1. [tex]if[/tex] [tex]tan \theta= \frac{12}{5} [/tex] and [tex]0 \leq \theta \leq \frac{\pi}{2} [/tex], then secΘ=
2. [tex]if[/tex] [tex]sin \theta= \frac{3}{5} [/tex] and [tex]0 \leq \theta \leq \frac{\pi}{2} [/tex], then [tex]tan \theta= [/tex]
3. if [tex]cos \theta= \frac{4}{5} [/tex] and [tex]0 \leq \theta \leq \frac{\pi}{2} [/tex], then [tex]cot \theta= [/tex]

show all work

Respuesta :

[tex]\sec^2\theta=1+\tan^2\theta\implies \sec\theta=\pm\sqrt{1+\tan^2\theta}[/tex]

Since [tex]\cos\theta>0[/tex] for [tex]0<\theta<\dfrac\pi2[/tex], we have [tex]\sec\theta>0[/tex], so we take the positive root. Now,

[tex]\sec\theta=\sqrt{1+\left(\dfrac{12}5\right)^2}=\dfrac{13}5[/tex]

- - -

[tex]\tan\theta=\dfrac{\sin\theta}{\cos\theta}[/tex]
[tex]\cos^2\theta=1-\sin^2\theta[/tex]

In the first quadrant, cosine is positive, so

[tex]\cos\theta=\sqrt{1-\sin^2\theta}[/tex]

and in turn,

[tex]\sin\theta=\dfrac35\implies\cos\theta=\sqrt{1-\left(\dfrac35\right)^2}=\dfrac45[/tex]
[tex]\implies\tan\theta=\dfrac{\frac35}{\frac45}=\dfrac34[/tex]

- - -

In the previous problem, we had [tex]\cos\theta=\dfrac45[/tex], so we must have [tex]\tan\theta=\dfrac34[/tex], which means

[tex]\cot\theta=\dfrac1{\tan\theta}=\dfrac1{\frac34}=\dfrac43[/tex]

Answer:

:p irlya its 81

Step-by-step explanation: