Respuesta :

the odd function is : f(x) = 6x^3 + 2x
because for all x in R : 
f(-x) = 6(-x)^3+2(-x) 
        = -6x^3-2x
         = -(6x^3+2x)
f(-x) = - f(x)

A function is considered odd when [tex]f(-x)=-f(x)[/tex]

So, let us check each function

[tex]f(-x)=3(-x)^2-x\\\Rightarrow f(-x)=3x^2-x\neq -f(x)[/tex]

[tex]f(-x)=4(-x)^3+7\\\Rightarrow f(-x)=-4x+7\neq -f(x)[/tex]

[tex]f(-x)=5(-x)^2+9\\\Rightarrow f(-x)=5x+9\neq -f(x)[/tex]

[tex]f(-x)=6(-x)^3+2(-x)\\\Rightarrow f(-x)=-6x^3-2x\\\Rightarrow f(-x)=-(6x^3+2x)=-f(x)[/tex]

Hence, the last option is an odd function.

Learn more:

https://brainly.com/question/15775372

https://brainly.com/question/14302660