Find the area of the sector by multiplying the area of the circle by the ratio of the________to 360.

Length of radius
Length of diameter
Measure of central angle
Measure of circle

Find the area of the sector by multiplying the area of the circle by the ratio of theto 360 Length of radius Length of diameter Measure of central angle Measure class=

Respuesta :

To start this problem off, you would need to find the ratio between the measure of the central angle and 360. This is because you need to find how much the sector (central angle) takes up the circle (360 degrees).

:)

Answer:

C. Measure of central angle.

Step-by-step explanation:

We have been given a statement about of a circle. We are asked to choose the correct option that will complete our given statement.

We will use area of sector to solve our given problem.

[tex]\text{Area of sector}=\frac{\theta}{360}\times \pi r^2[/tex], where,

[tex]\theta[/tex] = Measure of central angle,

[tex]\pi r^2[/tex] = Area of circle.

We know that area of sector can be found by multiplying the area of circle by the ratio of the measure of central angle to 360.

Therefore, option C is the correct choice.