Answer:
The correct answer is option C
Step-by-step explanation:
The perimeter of a rectangular track is
[tex]2 L + 2 W\\[/tex]
Where L is the length of the rectangular track
W is the width of the rectangular track
Substituting the given values of L and W in above equation, we get -
[tex]2 (\frac{2\sqrt{3} }{\sqrt{5} }) + 2(\frac{3\sqrt{5} }{\sqrt{7} })\\= (\frac{4\sqrt{3} }{\sqrt{5} }) + (\frac{6\sqrt{5} }{\sqrt{7} })\\[/tex]
[tex](\frac{4\sqrt{3} }{\sqrt{5} }) *\frac{\sqrt{5}}{\sqrt{5}} + (\frac{6\sqrt{5} }{\sqrt{7} })*\frac{\sqrt{7}}{\sqrt{7}}\\= (\frac{4\sqrt{15} }{5 }) + (\frac{6\sqrt{35} }{7} })[/tex]