If (x + 1)(x - 3) = 5, then which of the following statements is true?

x + 1 = 0 or x - 3 = 0
x + 1 = 5 or x - 3 = 5
x - 4 = 0 or x + 2 = 0

Respuesta :

The third is correct

(x+1)(x-3)=5
x²-2x-3-5=0
(x-4)(x+2)=0

Answer:

[tex](x-4)=0[/tex] or [tex](x+2)=0[/tex]

Step-by-step explanation:

we have

[tex](x + 1)(x - 3) = 5[/tex]

Multiply

[tex]x^{2} -3x+x-3=5[/tex]

[tex]x^{2} -2x-3-5=0[/tex]

[tex]x^{2} -2x-8=0[/tex]

we know that


The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to


[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]


in this problem we have


[tex]x^{2} -2x-8=0[/tex]

so


[tex]a=1\\b=-2\\c=-8[/tex]


substitute in the formula


[tex]x=\frac{-(-2)(+/-)\sqrt{-2^{2}-4(1)(-8)}} {2(1)}[/tex]


[tex]x=\frac{2(+/-)\sqrt{36}} {2}[/tex]


[tex]x=\frac{2(+/-)6} {2}[/tex]


[tex]x=\frac{2+6} {2}=4[/tex]


[tex]x=\frac{2-6} {2}=-2[/tex]


therefore

[tex](x-4)(x+2)=0[/tex]

so

[tex](x-4)=0[/tex] or [tex](x+2)=0[/tex]