Respuesta :
ANSWER
The solutions are,
[tex]x =3 \: and \: x = - 3[/tex]
EXPLANATION
The given equation is
[tex]4 {x}^{2} - 36 = 0[/tex]
We factor to obtain,
[tex]4( {x}^{2} - 9) = 0[/tex]
We rewrite to get,
[tex]4( {x}^{2} - {3}^{2} ) = 0[/tex]
We apply difference of two squares to get,
[tex]4(x - 3) (x + 3)= 0[/tex]
We divide through by 4 to get,
[tex](x - 3) (x + 3)= 0[/tex]
This implies that, either
[tex](x - 3) = 0 \: or \: (x + 3)= 0[/tex]
This gives,
[tex]x =3 \: or \: x = - 3[/tex]
The solutions are,
[tex]x =3 \: and \: x = - 3[/tex]
EXPLANATION
The given equation is
[tex]4 {x}^{2} - 36 = 0[/tex]
We factor to obtain,
[tex]4( {x}^{2} - 9) = 0[/tex]
We rewrite to get,
[tex]4( {x}^{2} - {3}^{2} ) = 0[/tex]
We apply difference of two squares to get,
[tex]4(x - 3) (x + 3)= 0[/tex]
We divide through by 4 to get,
[tex](x - 3) (x + 3)= 0[/tex]
This implies that, either
[tex](x - 3) = 0 \: or \: (x + 3)= 0[/tex]
This gives,
[tex]x =3 \: or \: x = - 3[/tex]