Respuesta :

(6z² - 4z + 1)(8 - 3z)                          Expand
= 48z
² -18z³ - 32z +12z² +8 - 3z       Collect like terms
= -18z³ + 60z² - 35z + 8

(6z² - 4z + 1)(8 - 3z)   = -18z³ + 60z² - 35z + 8

Answer:

Option (d) is correct.

The product of  terms [tex]6z^2-4z+1[/tex] and [tex]8-3z[/tex] is

[tex]-18z^3+60z^2-35z+8[/tex]

Step-by-step explanation:

Given two terms [tex]6z^2-4z+1[/tex] and [tex]8-3z[/tex]

We have to find the product of the two given terms that is [tex](6z^2-4z+1)(8-3z)[/tex]

Consider [tex](6z^2-4z+1)(8-3z)[/tex]

[tex](6z^2-4z+1)(8-3z)[/tex] is same as [tex](8-3z)(6z^2-4z+1)[/tex]

To find the product we first multiply each term of first bracket with each term of second one, we get,

[tex](8-3z)(6z^2-4z+1)=8(6z^2-4z+1)-3z(6z^2-4z+1)[/tex]

Multiply , we get,

[tex]8(6z^2-4z+1)-3z(6z^2-4z+1)=48z^2-32z+8-18z^3+12z^2-3z[/tex]

Simplify by clubbing together like terms, we get,

[tex]48z^2-32z+8-18z^3+12z^2-3z=-18z^3+60z^2-35z+8[/tex]

Thus, the product of  terms [tex]6z^2-4z+1[/tex] and [tex]8-3z[/tex] is [tex]-18z^3+60z^2-35z+8[/tex]

Option (d) is correct.