Respuesta :
(6z² - 4z + 1)(8 - 3z) Expand
= 48z² -18z³ - 32z +12z² +8 - 3z Collect like terms
= -18z³ + 60z² - 35z + 8
(6z² - 4z + 1)(8 - 3z) = -18z³ + 60z² - 35z + 8
= 48z² -18z³ - 32z +12z² +8 - 3z Collect like terms
= -18z³ + 60z² - 35z + 8
(6z² - 4z + 1)(8 - 3z) = -18z³ + 60z² - 35z + 8
Answer:
Option (d) is correct.
The product of terms [tex]6z^2-4z+1[/tex] and [tex]8-3z[/tex] is
[tex]-18z^3+60z^2-35z+8[/tex]
Step-by-step explanation:
Given two terms [tex]6z^2-4z+1[/tex] and [tex]8-3z[/tex]
We have to find the product of the two given terms that is [tex](6z^2-4z+1)(8-3z)[/tex]
Consider [tex](6z^2-4z+1)(8-3z)[/tex]
[tex](6z^2-4z+1)(8-3z)[/tex] is same as [tex](8-3z)(6z^2-4z+1)[/tex]
To find the product we first multiply each term of first bracket with each term of second one, we get,
[tex](8-3z)(6z^2-4z+1)=8(6z^2-4z+1)-3z(6z^2-4z+1)[/tex]
Multiply , we get,
[tex]8(6z^2-4z+1)-3z(6z^2-4z+1)=48z^2-32z+8-18z^3+12z^2-3z[/tex]
Simplify by clubbing together like terms, we get,
[tex]48z^2-32z+8-18z^3+12z^2-3z=-18z^3+60z^2-35z+8[/tex]
Thus, the product of terms [tex]6z^2-4z+1[/tex] and [tex]8-3z[/tex] is [tex]-18z^3+60z^2-35z+8[/tex]
Option (d) is correct.