Respuesta :
Written like this? [tex] 2^{45} + 3^{20} +2^{5} [/tex]
If this is correct, reply to my so I can solve it.
If this is correct, reply to my so I can solve it.
Interpreted input: [tex]\frac{2\sqrt{45} + 3\sqrt{20}}{2\sqrt{5}}[/tex]
We can rewrite:
[tex]\sqrt{45} = \sqrt{9 \cdot 5}} = 3\sqrt{5}[/tex]
[tex]\sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5}[/tex]
By substituting our simplified form into the equation, we get:
[tex]\frac{2 \cdot 3\sqrt{5} + 3 \cdot 2\sqrt{5}}{2\sqrt{5}}[/tex]
[tex]= \frac{6\sqrt{5} + 6\sqrt{5}}{2\sqrt{5}}[/tex]
[tex]= \frac{12\sqrt{5}}{2\sqrt{5}}[/tex]
[tex]= 6[/tex]
We can rewrite:
[tex]\sqrt{45} = \sqrt{9 \cdot 5}} = 3\sqrt{5}[/tex]
[tex]\sqrt{20} = \sqrt{4 \cdot 5} = 2\sqrt{5}[/tex]
By substituting our simplified form into the equation, we get:
[tex]\frac{2 \cdot 3\sqrt{5} + 3 \cdot 2\sqrt{5}}{2\sqrt{5}}[/tex]
[tex]= \frac{6\sqrt{5} + 6\sqrt{5}}{2\sqrt{5}}[/tex]
[tex]= \frac{12\sqrt{5}}{2\sqrt{5}}[/tex]
[tex]= 6[/tex]