Which equation is the inverse of 5y+4 = (x+3)^2 + 1/2?

we have
[tex]5y+4=(x+3)^{2}+\frac{1}{2}[/tex]
Step 1
Swap x and y
[tex]5x+4=(y+3)^{2}+\frac{1}{2}[/tex]
Step 2
Solve for y
[tex]5x+4-\frac{1}{2}=(y+3)^{2}[/tex]
[tex](y+3)^{2}=5x+\frac{7}{2}[/tex]
Square root both sides
[tex](y+3)=(+/-)\sqrt{5x+\frac{7}{2}}[/tex]
[tex]y=(+/-)\sqrt{5x+\frac{7}{2}}-3[/tex]
Step 3
Let
[tex]f(x)^{-1}=y[/tex]
[tex]f(x)^{-1}=(+/-)\sqrt{5x+\frac{7}{2}}-3[/tex]
therefore
the answer is the option D
[tex]y=-3(+/-)\sqrt{5x+\frac{7}{2}}[/tex]
The inverse of an equation is its opposite
The inverse equation is [tex]y = -3 \pm \sqrt{5x + \frac 72}[/tex]
The equation is given as:
[tex]5y + 4 = (x + 3)^2 + \frac12[/tex]
Subtract 1/2 from both sides
[tex]5y + \frac 72 = (x + 3)^2[/tex]
Take the square roots of both sides
[tex]\pm \sqrt{5y + \frac 72} = x+ 3[/tex]
Subtract 3 from both sides
[tex]-3 \pm \sqrt{5y + \frac 72} = x[/tex]
Rewrite the equation as:
[tex]x = -3 \pm \sqrt{5y + \frac 72}[/tex]
Swap x and y
[tex]y = -3 \pm \sqrt{5x + \frac 72}[/tex]
Hence, the inverse equation is [tex]y = -3 \pm \sqrt{5x + \frac 72}[/tex]
Read more about inverse equations at:
https://brainly.com/question/8120556