Answer:
1.8°
Step-by-step explanation:
u = <6,4> , v = <7,5>
Magnitude of u
[tex]|u|=\sqrt{6^2+4^2}\\\Rightarrow |u|=\sqrt{36+16}\\\Rightarrow |u|=\sqrt {52}[/tex]
Magnitude of v
[tex]|v|=\sqrt{7^2+5^2}\\\Rightarrow |u|=\sqrt{49+25}\\\Rightarrow |u|=\sqrt {74}[/tex]
[tex]cos\alpha =\frac{u.v}{|u|\ |v|}\\\Rightarrow cos\alpha =\frac{6\times 7+4\times 5}{\sqrt {52} \sqrt {74}}\\\Rightarrow cos\alpha =0.99948\\\Rightarrow \alpha =cos^{-1}0.99948\\\Rightarrow \alpha =1.847^{\circ}[/tex]
∴ Angle between the vectors is 1.8°