Respuesta :

With the information given we can work out the following:
[tex] (p+q) ^n=(p+q)^5 =p^5 + (5p^4)q + (10 p^3 * q^2) + (10p^2 * q^3) +5p(q^4) + q^5=(0.3)^5 + (5(0.3)^4)q + (10 (0.3)^3 * q^2) + (10(0.03^2 * q^3) +5*0.3(q^4) + q^5
[/tex]
Once all calculations are done you get that if p=0.3 then
[tex] =1-p=1-0,3 =0.7[/tex]

The value of the binomial distribution is 0.00243 + 0.0405q + 0.27q^2 + 0.9q^3 + 1.5q^4 + q^5

How to evaluate the expression?

The expression is given as:

(p+q)^n

When n = 5 and p = 0.3

This means that:

(0.3+q)^5

Using the pascal triangle.

The exponent of 5 is represented as:

1 5 10 10 5 1

So, we have:

(0.3+q)^5 = 1 * 0.3^5 + 5 * 0.3^4 * q + 10 * 0.3^3 + q^2 + 10 * 0.3^2 + q^3 + 5 * 0.3 + q^4 + 1 * q^5

Evaluate

(0.3+q)^5 = 0.00243 + 0.0405q + 0.27q^2 + 0.9q^3 + 1.5q^4 + q^5

Hence, the value of the binomial distribution is 0.00243 + 0.0405q + 0.27q^2 + 0.9q^3 + 1.5q^4 + q^5

Read more about binomial distribution at:

https://brainly.com/question/15246027

#SPJ5