What are the zeros of the quadratic function f(x) = 6x2 + 12x – 7?

x = –1 – and x = –1 +
x = –1 – and x = –1 +
x = –1 – and x = –1 +
x = –1 – and x = –1 +

Respuesta :

we have

[tex]f(x) = 6x^{2} + 12x -7[/tex]

To find the zeros equate the function to zero

[tex] 6x^{2} + 12x -7=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]7= 6x^{2} + 12x[/tex]

Factor the leading coefficient

[tex]7= 6(x^{2} + 2x)[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side

[tex]7+6= 6(x^{2} + 2x+1)[/tex]

[tex]13= 6(x^{2} + 2x+1)[/tex]

Rewrite as perfect squares

[tex]13= 6(x+1)^{2}[/tex]

[tex](13/6)=(x+1)^{2}[/tex]

square root both sides

[tex]x+1=(+/-)\sqrt{\frac{13}{6}}[/tex]

[tex]x=-1(+/-)\sqrt{\frac{13}{6}}[/tex]

[tex]x1=-1+\sqrt{\frac{13}{6}}[/tex]

[tex]x2=-1-\sqrt{\frac{13}{6}}[/tex]

therefore

the answer is

The zeros of the quadratic function are

[tex]x=-1+\sqrt{\frac{13}{6}}[/tex] and [tex]x=-1-\sqrt{\frac{13}{6}}[/tex]


Answer:

[tex]x=-1+\frac{\sqrt{78}}{6}[/tex], [tex]x=-1-\frac{\sqrt{78}}{6}[/tex].

Step-by-step explanation:

The given quadratic equation function is f(x) = 6x²+12x -7

To find the zeros of the quadratic equation we rewrite the function as

6x² + 12x - 7 = 0

Now we know the quadratic formula to get the solutions as

[tex]x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}[/tex]

here a = 6

b = 12

c = -7

By putting these values in the formula

[tex]x=\frac{-12\pm \sqrt{144-4\times 6\times (-7)}}{2\times 6}[/tex]

[tex]=\frac{-12\pm \sqrt{144+168}}{12}=\frac{-12\pm \sqrt{312}}{12}[/tex][tex]=\frac{-12\pm \sqrt{4\times 78}}{12}=-1\pm \frac{2\sqrt{78}}{12}[/tex]

[tex]=-1\pm \frac{\sqrt{78}}{6}[/tex]

[tex]x=-1+\frac{\sqrt{78}}{6}[/tex]

and [tex]x=-1-\frac{\sqrt{78}}{6}[/tex]