Integrate f(x,y,z)=20xz over the region in the first octant (x,y,z≥0) above the parabolic cylinder z=y2 and below the paraboloid z=8−2x2−y2.

Respuesta :

Answer:

Check attached document for step by step answers...

Step-by-step explanation:

Ver imagen fortuneonyemuwa
Ver imagen fortuneonyemuwa

[tex]\int \int \int f(x,y,z) = \dfrac{10240}{21}[/tex]

Step-by-step explanation:

Given :

[tex]f(x,y,z) = 20xz[/tex]

the region in the first octant [tex](x,y,z\geq 0)[/tex] above the parabolic cylinder [tex]z = y^2[/tex] and below the paraboloid [tex]z = 8-2x^2-y^2[/tex].

Calculation :

[tex]y^2 = 8-2x^2-y^2[/tex]

[tex]2y^2= 8-2x^2[/tex]

[tex]y = \sqrt{4-x^2}[/tex]

[tex]\bigtriangleup = \left \{ (x,y,z)| 0\leq x\leq 2, 0\leq y\leq \sqrt{4-x^2} ,y^2 \leq z \leq 8-2x^2-y^2\right \}[/tex]

[tex]\int \int \int f(x,y,z) = \int_{0}^{2}\int_{0}^{\sqrt{4-x^2}}\int_{y^2}^{8-2x^2-y^2}20xz\; dzdydx[/tex]

[tex]\int \int \int f(x,y,z) = \int_{0}^{2}\int_{0}^{\sqrt{4-x^2}}\dfrac{20}{2}x \left(z^2\right)_{y^2}^{8-2x^2-y^2} \; dydx[/tex]

[tex]\int \int \int f(x,y,z) = \int_{0}^{2}\int_{0}^{\sqrt{4-x^2}}10x((8-2x^2-y^2)^2-(y^4)) \; dydx[/tex]

[tex]\int \int \int f(x,y,z) = \int_{0}^{2}\int_{0}^{\sqrt{4-x^2}}(640x-320x^3-160xy^2+40x^5+40x^3y^2)\; dydx[/tex]

[tex]\int \int \int f(x,y,z) = \int_{0}^{2}\left(640xy-320x^3y-\dfrac{160}{3}xy^3+40x^5y+\dfrac{40}{3}x^3y^3 \right)_{0}^{\sqrt{4-x^2} } \; dx[/tex]

[tex]\int \int \int f(x,y,z) = \dfrac{10240}{21}[/tex]

For more information, refer to the link given below

https://brainly.com/question/19484372?referrer=searchResults