Respuesta :

Answer:

D

Step-by-step explanation:

If we solve A, it comes to 2x=6 (adding 7 to both sides.) and x comes to x=positive 3

If we solve B, it comes to: 3x=-7 (subtracting 8 from both sides) and x would equal -7/3.

If we solve C, it comes to 1/2x=2  (subtracting 8 from both sides) and x would equal 4.

If we solve D, first we have to distribute so the equation becomes x-3=-6 which comes to x=-3 (adding 3 to both sides.)

Answer:

[tex]\boxed {\sf D}[/tex]

Step-by-step explanation:

[tex]\sf A.\: 2x - 7 = -1[/tex]

[tex]\sf 2x-7+7=-1+7[/tex]

[tex]\sf 2x=6[/tex]

[tex]\sf \cfrac{2x}{2}=\cfrac{6}{2}[/tex]

[tex]\boxed {\sf x=3}[/tex]

[tex]\boxed{\sf NO}[/tex]

___________________

[tex]\sf B.\:3x + 8 = 1[/tex]

[tex]\sf 3x+8-8=1-8[/tex]

[tex]\sf 3x=-7[/tex]

[tex]\sf \cfrac{3x}{3}=\cfrac{-7}{3}[/tex]

[tex]\boxed {\sf x=-\frac{7}{3}}[/tex]

[tex]\boxed{\sf NO}[/tex]

_____________________

[tex]\sf \cfrac{1}{2}\:x+8=10[/tex]

[tex]\sf \cfrac{1}{2}\:x+8-8=10-8[/tex]

[tex]\sf \cfrac{1}{2}\:x=2[/tex]

[tex]\sf 2\times \cfrac{1}{2}\:x=2\times \:2[/tex]

[tex]\boxed{\sf x=4}[/tex]

[tex]\boxed {\sf NO}[/tex]

_____________________

[tex]\sf D.\: \cfrac{1}{2}\left(2x-6\right)=-6[/tex]

[tex]\sf 2\times \cfrac{1}{2}\left(2x-6\right)=2\left(-6\right)[/tex]

[tex]\sf x-6=-12[/tex]

[tex]\sf 2x-6+6=-12+6[/tex]

[tex]\sf 2x=-6[/tex]

[tex]\sf \cfrac{2x}{2}=\cfrac{-6}{2}[/tex]

[tex]\boxed{\sf x=-3}[/tex]

[tex]\boxed{\sf YES\: \checkmark }[/tex]

______________________