What are the coordinates of the turning point for the function f(x) = (x − 2)^3 + 1?
A. (−2, −1)
B. (−2, 1)
C. (2, −1)
D. (2, 1)

Respuesta :

The turning point is (2,1).

Hope this helps!

Answer:

[tex](2,1)[/tex]

Step-by-step explanation:

The given function is,

[tex]f(x) = (x -2)^3 + 1[/tex]

Turning point of a graph is the point where the graph where the graph changes from increasing to decreasing (rising to falling) or decreasing to increasing (falling to rising).

For a cubic function, the critical point also serves as a turning point.

[tex]\Rightarrow f(x) = (x -2)^3 + 1[/tex]

[tex]\Rightarrow f'(x) = 3(x -2)^2[/tex]

For critical point,

[tex]\Rightarrow f'(x)=0[/tex]

[tex]\Rightarrow 3(x -2)^2=0[/tex]

[tex]\Rightarrow (x -2)^2=0[/tex]

[tex]\Rightarrow x -2=0[/tex]

[tex]\Rightarrow x=2[/tex]

Then, [tex]f(2) = (2 -2)^3 + 1=1[/tex]

So the critical point or turning point is [tex](2,1)[/tex]

Ver imagen InesWalston