Respuesta :
[tex]\bf z=2\left[ cos\left( \frac{11\pi }{6} \right) + i\ sin\left( \frac{11\pi }{6} \right) \right]\qquad
\begin{cases}
r=2\\
\theta=\frac{11\pi }{6}\\
-----\\
a=x=rcos(\theta)\\
b=y=rsin(\theta)
\end{cases}\implies a+bi
\\\\\\
2cos\left( \frac{11\pi }{6} \right)+2sin\left( \frac{11\pi }{6} \right)\ i\implies 2\cdot \cfrac{\sqrt{3}}{2}+2\cdot \cfrac{-1}{2}\ i\implies \sqrt{3}-1i
\\\\\\
\boxed{\sqrt{3}-i}[/tex]
Answer:
Option A - [tex]z=\sqrt{3}-i[/tex]
Step-by-step explanation:
Given : Polar representation of complex number [tex]z=2[\cos( \frac{11\pi }{6}) + i\sin( \frac{11\pi }{6} )][/tex]
To find : Convert the polar representation of this complex number into its standard form?
Solution :
[tex]z=2[\cos(\frac{11\pi }{6}) + i\sin(\frac{11\pi }{6})][/tex]
The given complex number is in the form, [tex]z=r(\cos\theta+i\sin\theta)[/tex]
Where, r=2 and [tex]\theta=\frac{11\pi }{6}[/tex]
The standard form of complex number is z=x+iy
Where, [tex]a=x=r\cos\theta\\b=y=r\sin\theta[/tex]
[tex]2\cos( \frac{11\pi }{6})+2\sin( \frac{11\pi }{6})\ i\implies 2\cdot \cfrac{\sqrt{3}}{2}+2\cdot \cfrac{-1}{2}\ i\implies \sqrt{3}-1i\\\\\boxed{z=\sqrt{3}-i}[/tex]
Therefore, Option A is correct.