Respuesta :
v(t)=t^2+2t+1 integrating we get d(t)
d(t)=t^3/3+t^2+t or more neatly
d(t)=(t^3+3t^2+3t)/3 so
d(2)=(8+12+6)/3
d(2)=26/3
So the particle moves 9 feet (to the nearest foot) in the first two minutes.
d(t)=t^3/3+t^2+t or more neatly
d(t)=(t^3+3t^2+3t)/3 so
d(2)=(8+12+6)/3
d(2)=26/3
So the particle moves 9 feet (to the nearest foot) in the first two minutes.
we need to find where the velocity cross the x axis because integrating will only find the displacement
solve
v(t)=0=t^2+2t+1
(t+1)^2
at t=-1
so not in tthe range
so find the area under the curve of v(t) from t=0 to t=2
[tex] \int\limits^2_0 {t^2+2t+1} \, dt[/tex]=
using the reverse power rule
[tex][ \frac{1}{3}t^3+t^2+t ]^2_0[/tex]=
[tex] \frac{8}{3} +4+2-0[/tex]=
[tex]\frac{8}{3} + \frac{18}{3} [/tex]=
[tex]\frac{26}{3} [/tex]=
8.666666666666ft
about 9ft
solve
v(t)=0=t^2+2t+1
(t+1)^2
at t=-1
so not in tthe range
so find the area under the curve of v(t) from t=0 to t=2
[tex] \int\limits^2_0 {t^2+2t+1} \, dt[/tex]=
using the reverse power rule
[tex][ \frac{1}{3}t^3+t^2+t ]^2_0[/tex]=
[tex] \frac{8}{3} +4+2-0[/tex]=
[tex]\frac{8}{3} + \frac{18}{3} [/tex]=
[tex]\frac{26}{3} [/tex]=
8.666666666666ft
about 9ft