Respuesta :
hello :
2x - y - 4 = 0 ....(1)
3x + y - 9 = 0 ....(2)
(1)+(2) : 5x-13 =0
5x=13
x=13/5
subsct in (2) :3(13/5)+y-9=0
y = 9-39/5
y=6/5
answer : b. {(13/5, 6/5)}
2x - y - 4 = 0 ....(1)
3x + y - 9 = 0 ....(2)
(1)+(2) : 5x-13 =0
5x=13
x=13/5
subsct in (2) :3(13/5)+y-9=0
y = 9-39/5
y=6/5
answer : b. {(13/5, 6/5)}
Answer:
Option B.
Step-by-step explanation:
The given equations of the system are
2x - y - 4 = 0
2x - 4 = y ------(1)
3x + y - 9 = 0
3x + y = 9
y = 9 - 3x ------(2)
By replacing the value of y from equation (1) to equation (2)
2x - 4 = 9 - 3x
2x = 4 + 9 - 3x
2x = 13 - 3x
2x + 3x = 13
5x = 13
x = [tex]\frac{13}{5}[/tex]
Now we plug in the value of x in the equation (1)
[tex]y=9-(3\times \frac{13}{5})[/tex]
[tex]y=9-(\frac{39}{5})[/tex]
[tex]y=\frac{45-39}{5}[/tex]
[tex]y=\frac{6}{5}[/tex]
Therefore, solution of the given system is [tex][\frac{13}{5},\frac{6}{5}][/tex].
Option B. is the answer.