Respuesta :
it means f(x) is composed of g(x)
f(g(x)) = 3g(x) + 2
= 3(x^2 + 1) + 2
3(x 2 + 1) + 2 is the answer (fourth choices)
f(g(x)) = 3g(x) + 2
= 3(x^2 + 1) + 2
3(x 2 + 1) + 2 is the answer (fourth choices)
Answer:
Option 4th is correct
[tex]3(x^2+1)+2[/tex]
Step-by-step explanation:
Given the functions:
[tex]f(x) = 3x+2[/tex] and [tex]g(x) = x^2+1[/tex]
We have to find the [tex](f o g)(x)[/tex]
[tex](f o g)(x) = f(g(x))[/tex]
Substitute the given function of g(x) we have;
[tex](f o g)(x)=f(x^2+1)[/tex]
Replace [tex]x[/tex] with [tex]x^2+1[/tex] in fucntion f(x) we have;
[tex]f(x^2+1) =3(x^2+1)+2[/tex]
therefore, the expression is equivalent to [tex](f o g)(x)[/tex] is, [tex]3(x^2+1)+2[/tex]