Respuesta :

-1 |  1   0   0   0   -2
.   |      -1   1  -1    1
- - - - - - - - - - - - - - -
.   |  1  -1   1  -1    -1

which translates to

[tex]\dfrac{x^4-2}{x+1}=x^3-x^2+x-1-\dfrac1{x+1}[/tex]

Answer with explanation:

 [tex]\frac{x^4-2}{x+1}\\\\=\frac{x^4-1-1}{x+1}\\\\=\frac{x^4-1^4}{x+1}-\frac{1}{x+1}\\\\=\frac{(x^2-1^2)(x^2+1^2)}{x+1}-\frac{1}{x+1}\\\\=\frac{(x-1)(x+1)(x^2+1)}{x+1}-\frac{1}{x+1}\\\\=(x-1)(x^2+1)-\frac{1}{x+1}\\\\=x \times (x^2+1)-1\times (x^2+1)-\frac{1}{x+1}\\\\=x^3+x-x^2-1-\frac{1}{x+1}\\\\=x^3-x^2+x-1-\frac{1}{x+1}[/tex]

Or

Writing the coefficient of [tex]x^4,x^3,x^2, x[/tex]

and made the table to solve by synthetic Division method.

Option A

Ver imagen Аноним