Respuesta :

bcalle
If you find the discriminant it will tell you the number and types of roots. The discriminant is the value b^2 -4ac.
a = 1
b = 1
c = 1
1^2 - 4*1*1
1-4 = -3
Since this is a negative number there will be 2 complex roots.

Answer:

The number of complex roots is 6.

Step-by-step explanation:

The given equation is

[tex]x^6+x^3+1=0[/tex]

it can be written as

[tex](x^3)^2+x^3+1=0[/tex]

Substitute [tex]t=x^3[/tex],

[tex](t)^2+t+1=0[/tex]

Using quadratic formula.

[tex]t=\frac{-1\pm \sqrt{1^2-4(1)(1)}}{2}=\frac{-1\pm 3i}{2}[/tex]     [tex]t=\frac{-b\pm \sqrt{b^2-4ac}}{2}[/tex]

We know that

[tex]\omega =\frac{-1\pm 3i}{2}[/tex]

It is a complex number.

[tex]x^3=\omega[/tex]

[tex]x=(\omega)^{\frac{1}{3}}[/tex]

Cube root of a complex number is complex.

Therefore the number of complex roots is 6.