What are the first two terms of the sequence defined recursively by the formula
an=(an-1)^2+4 when a4=1604
A. 2, 8
B. 6, 40
C. [tex] \sqrt2, 6 [/tex]
D. [tex] \sqrt6, 10[/tex]

Respuesta :

Answer: C.  [tex]\sqrt2,\ 6[/tex]


Step-by-step explanation:

Given formula [tex]a_n=(a_{n-1})^2+4[/tex]

when[tex]a_4=1604[/tex]

Substitute n=4 in th given formula , we get

[tex]a_4=(a_{4-1})^2+4\\\Rightarrow1604=(a_3)^2+4\\\Rightarrow(a_3)^2=1604-4\\\Rightarrow(a_3)^2=1600\\\Rightarrow\ a_3=40[/tex]

Substitute n=3 in the given formula, we get

[tex]a_3=(a_{3-1})^2+4\\\Rightarrow40=(a_2)^2+4\\\Rightarrow(a_2)^2=40-4\\\Rightarrow(a_2)^2=36\\\Rightarrow\ a_2=6[/tex]

Substitute n=2 in the given formula, we get

[tex]a_2=(a_{2-1})^2+4\\\Rightarrow6=(a_1)^2+4\\\Rightarrow(a_1)^2=6-4\\\Rightarrow(a_1)^2=2\\\Rightarrow\ a_1=\sqrt{2}[/tex]

Thus, the first two terms of the sequence= [tex]\sqrt{2}\ and \ 6[/tex]

The first two terms of the sequence defined recursively by the formula are √2 and 6

Recursive functions

Recursive functions are expressions used to iterate a sequence. Given the recursive function expressed as:

an=(an-1)^2+4

If a4 = 1604, then;

1604 = (an-1)^2+4

1600 = (a4-1)^2
40 = a3
a3 = 40

Determine the second term

a3 = (a2)^2+4

40 - 4 = (a2)^2
√36 = a2
a2  = 6

Determine the first term:

a2 = (a1)^2+4

6 - 4 = (a1)^2
√2 = a1
a1  = √2

Hence the first two terms of the sequence defined recursively by the formula are √2 and 6

Learn more on recursive function here:   https://brainly.com/question/11316313