Respuesta :

(f + g)(x) = f(x) + g(x) = (3x - 4) + (-x^2) = - x^2 + 3x - 4 
(f - g)(x) = f(x) - g(x) = (3x - 4) - (-x^2) = x^2 + 3x - 4 
(f * g)(x) = f(x) * g(x) = (3x - 4) * (-x^2) = -3x^3 + 4x^2 
(f / g)(x) = f(x) / g(x) = (3x - 4) / (-x^2) = 4/x^2 - 3/x 
(f o g)(x) = f( g(x) ) = 3 ( g(x) ) - 4 = 3 ( -x^2 ) - 4 = -3x^2 - 4 

(f • g)(0) ? 
if (f * g)(0) = -3(0)^3 + 4(0)^2 = 0 
if (f o g)(0) = -3(0)^2 - 4 = - 4
(f • g)(0)? 
IF (f * g)(0) = -3(0)^3 + 4(0)^2 = 0 
IF (f o g)(0) = -3(0)^2 - 4 = - 4