If y varies directly as x, and y is 18 when x is 5, which expression can be used to find the value of y when x is 11?

a.y=5/18(11)
b.y=18/5(11)
c.y=(18)(5)/11
d.y=11/(18)(5)

Respuesta :

B. 18/5(11), because when solving for k using the equation y=kx than you get 18/5 and then multiply by 11.

Answer:

Option b is correct

[tex]y=\frac{18}{5}(11)[/tex]

Step-by-step explanation:

The direct variation says that:

[tex]y \propto x[/tex], then the equation is of the form:

[tex]y=kx[/tex] where, k is the constant of variation.

As per the statement:

If y varies directly as x.

By direct variation:

[tex]y = kx[/tex]                ....[1]

If y = 18 when x = 5

Substitute these values in [1] we have;

[tex]18 = 5k[/tex]

Divide both sides by 5 we have;

[tex]\frac{18}{5}= k[/tex]

or

[tex]k = \frac{18}{5}[/tex]

⇒[tex]y = \frac{18}{5}x[/tex]                 ......[2]

We have to find the value of y when x = 11.

Substitute x = 11 in [2] we have;

[tex]y = \frac{18}{5} \cdot 11 = \frac{18}{5}(11)[/tex]

Therefore, the value of y is, [tex]\frac{18}{5}(11)[/tex]