[tex]\bf \begin{array}{lccclll}
&amount&price&\textit{total price}\\
&-----&-----&-----\\
\textit{nuts \$1.10/lb}&x&1.10&1.10x\\
\textit{candy \$1.60/lb}&36&1.6&57.6\\
-----&-----&-----&-----\\
\textit{mixture \$1.50/lb}&y&1.50&1.50y
\end{array}[/tex]
so... whatever "x" may be, we know that the whole mix will be "y" amount, thus x + 36 = y
and their total prices will also add up to 1.50y
thus 1.10x + 57.6 = 1.50y
thus [tex]\bf \begin{cases}
x+36=\boxed{y}\\
1.10x+57.6=1.50y\\
----------\\
1.10x+57.6=1.50\left( \boxed{x+36} \right)
\end{cases}[/tex]
solve for "x", to see how much nuts will be added
what about "y"? well x + 36 = y