Respuesta :
We can use the Front Outside Inside Last (FOIL) method to expand the double bracket
[tex](3x+5)(5x-1)[/tex]
Front ⇒[tex](3x)(5x)=15 x^{2} [/tex]
Outside ⇒[tex](3x)(-1)=-3x[/tex]
Inside ⇒[tex](5)(5x)=25x[/tex]
Last ⇒[tex](5)(-1)=-5[/tex]
Put the four terms together we have
[tex]15 x^{2} -3x+25x-5 [/tex], then collect like terms
[tex]15 x^{2} +22x-5[/tex]
[tex](3x+5)(5x-1)[/tex]
Front ⇒[tex](3x)(5x)=15 x^{2} [/tex]
Outside ⇒[tex](3x)(-1)=-3x[/tex]
Inside ⇒[tex](5)(5x)=25x[/tex]
Last ⇒[tex](5)(-1)=-5[/tex]
Put the four terms together we have
[tex]15 x^{2} -3x+25x-5 [/tex], then collect like terms
[tex]15 x^{2} +22x-5[/tex]
The simplified expression for the area of the rectangle is 15x^2 + 22x - 5
How to determine the simplified expression?
The area expression is given as:
(3x + 5)(5x − 1)
Expand
(3x + 5)(5x − 1) = 15x^2 - 3x + 25x - 5
Evaluate the like terms
(3x + 5)(5x − 1) = 15x^2 + 22x - 5
Hence, the simplified expression for the area is 15x^2 + 22x - 5
Read more about expressions at:
https://brainly.com/question/723406
#SPJ5