Respuesta :
A (x^4)/(9(y^3)) i would solve the equation with a caculator
Answer:
The simplified form is
[tex]\frac{(xy)^{-2}}{(3y)^2x^{-5}}=\frac{x^3}{9y^4}[/tex]
Step-by-step explanation:
[tex]\text{Given the expression }\frac{(xy)^{-2}}{(3y)^2x^{-5}}[/tex]
we have to simplify the above expression.
[tex]Expression: \frac{(xy)^{-2}}{(3y)^2x^{-5}}[/tex]
[tex]As, x^{-a}=\frac{1}{x^a}[/tex]
[tex]\frac{(xy)^{-2}}{(3y)^2x^{-5}}[/tex]
[tex]=\frac{x^5}{(xy)^2\times (3y)^2}[/tex]
[tex]=\frac{x^3}{9y^4}[/tex]
which is the simplified form.
Option B is correct