Consider the expression (xy)^-2/(3y)^2x^-5 . The equivalent simplified form of this expression is
(A.) (x^4)/(9(y^3))
(B.) (x^3)/(9(y^4))
(C.) 1/(9(x^3)(y^4))
(D.) 9/(x^-7)

Respuesta :

A (x^4)/(9(y^3)) i would solve the equation with a caculator

Answer:

The simplified form is

[tex]\frac{(xy)^{-2}}{(3y)^2x^{-5}}=\frac{x^3}{9y^4}[/tex]

Step-by-step explanation:

[tex]\text{Given the expression }\frac{(xy)^{-2}}{(3y)^2x^{-5}}[/tex]

we have to simplify the above expression.

[tex]Expression: \frac{(xy)^{-2}}{(3y)^2x^{-5}}[/tex]

[tex]As, x^{-a}=\frac{1}{x^a}[/tex]

[tex]\frac{(xy)^{-2}}{(3y)^2x^{-5}}[/tex]

[tex]=\frac{x^5}{(xy)^2\times (3y)^2}[/tex]

[tex]=\frac{x^3}{9y^4}[/tex]

which is the simplified form.

Option B is correct