Respuesta :
Volume of cylinder = [tex] \pi r^{2}h [/tex]
Substituting [tex]r=x+8[/tex] and height = [tex]2x+3[/tex]
Volume = [tex] \pi (x+8)^{2} (2x+3)[/tex], expanding the [tex](x+8)^{2} [/tex]
Volume = [tex] \pi ( x^{2} +16x+64)(2x+3)[/tex], expanding the last two brackets
Volume = [tex] \pi ( 2x^{3}+3 x^{2} +32 x^{2} +48x+128x+192) [/tex], then simplify
Volume = [tex] \pi ( 2x^{3} +35 x^{2} +176x+192)[/tex], then mulitply out pi
Volume = [tex]2 \pi x^{3}+35 \pi x^{2} +176 \pi x+192 \pi [/tex]
Substituting [tex]r=x+8[/tex] and height = [tex]2x+3[/tex]
Volume = [tex] \pi (x+8)^{2} (2x+3)[/tex], expanding the [tex](x+8)^{2} [/tex]
Volume = [tex] \pi ( x^{2} +16x+64)(2x+3)[/tex], expanding the last two brackets
Volume = [tex] \pi ( 2x^{3}+3 x^{2} +32 x^{2} +48x+128x+192) [/tex], then simplify
Volume = [tex] \pi ( 2x^{3} +35 x^{2} +176x+192)[/tex], then mulitply out pi
Volume = [tex]2 \pi x^{3}+35 \pi x^{2} +176 \pi x+192 \pi [/tex]