The volume of a cylinder is given by the formula V=(pi)(r^2)(h), where r is the radius of the cylinder and h is the height. Suppose a cylindrical can has radius (x + 8) and height (2x + 3). Which expression represents the volume of the can?

A) [tex] \pi [/tex][tex] x^{3} [/tex]+19[tex] \pi [/tex][tex] x^{2} [/tex]+112[tex] \pi [/tex]x+192
B) 2[tex] \pi [/tex][tex] x^{3} [/tex]+35[tex] \pi [/tex][tex] x^{2} [/tex]+80[tex] \pi [/tex]x+48[tex] \pi [/tex]
C) 2[tex] \pi [/tex][tex] x^{3} [/tex]+35[tex] \pi [/tex][tex] x^{2} [/tex]+176[tex] \pi [/tex]x+192[tex] \pi [/tex]
B) 4[tex] \pi [/tex][tex] x^{3} [/tex]+44[tex] \pi [/tex][tex] x^{2} [/tex]+105[tex] \pi [/tex]x+72[tex] \pi [/tex]

Respuesta :

Volume of cylinder = [tex] \pi r^{2}h [/tex]

Substituting [tex]r=x+8[/tex] and height = [tex]2x+3[/tex]

Volume = [tex] \pi (x+8)^{2} (2x+3)[/tex], expanding the [tex](x+8)^{2} [/tex]
Volume = [tex] \pi ( x^{2} +16x+64)(2x+3)[/tex], expanding the last two brackets
Volume = [tex] \pi ( 2x^{3}+3 x^{2} +32 x^{2} +48x+128x+192) [/tex], then simplify
Volume = [tex] \pi ( 2x^{3} +35 x^{2} +176x+192)[/tex], then mulitply out pi
Volume = [tex]2 \pi x^{3}+35 \pi x^{2} +176 \pi x+192 \pi [/tex]

The answer is D
 3pix^3+20pix^2+44pix+32pi