Respuesta :
Let's find the value of the hypotenuse AB = 25+9 = 24 and AB =√34
cos Ф =-5/√34
sin Ф = 3/√34
sec Ф = √34/(-5)
cot Ф = sin Ф/cos Ф = (3/√34)/(-5/√34)
cos Ф =-5/√34
sin Ф = 3/√34
sec Ф = √34/(-5)
cot Ф = sin Ф/cos Ф = (3/√34)/(-5/√34)
Answer:
given below
Step-by-step explanation:
given point (−5,3)
using Pythagoras theorem
H² = B² + L²
H² = (-5)² + (3)²
H = √34
now we can see that
Cos θ = [tex]\dfrac{B}{H}[/tex]
Cos θ = [tex]\dfrac{3}{\sqrt{34}}[/tex]
Sec θ = [tex]\dfrac{H}{B}[/tex]
Sec θ = [tex]\dfrac{\sqrt{34}}{3}[/tex]
cot θ = [tex]\dfrac{B}{P}[/tex]
cot θ = [tex]-\dfrac{5}{3}[/tex]