How long is the arc intersected by a central angle of π/2 radians in a circle with a radius of 4.5 cm? Round your answer to the nearest tenth. Use 3.14 for π

Respuesta :

PI/2 equals 90 degrees
circumference = 3.14 * 2 * 4.5
Use the formula:
arc length   =   circumference • [central angle (degrees) ÷ 360]
arc length   =    28.26 * (90 / 360)
arc length   =    7.065 cm
 


Answer:

7.1 cm

Step-by-step explanation:

Since, the arc length formula in a circle formula is,

[tex]l=r\times \theta[/tex]

Where,

r is the radius,

[tex]\theta[/tex] is the central angle ( in radians ) formed by the arc,

Here,

r = 4.5 cm,

[tex]\theta=\frac{\pi}{2}[/tex]

Hence, the arc length would be,

[tex]l=4.5\times \frac{\pi}{2}[/tex]

[tex]=\frac{4.5\times 3.14}{2}[/tex]

[tex]=\frac{14.13}{2}[/tex]

[tex]=7.065\text{ cm}\approx 7.1\text{ cm}[/tex]