Respuesta :
sn=(a1)((1-r^n)/(1-r))
=(-11)(1-(-4)^7)/(1-(-4))
=(-11)(1-(-16384))/5)
=(-11)(3277)
=-36047
=(-11)(1-(-4)^7)/(1-(-4))
=(-11)(1-(-16384))/5)
=(-11)(3277)
=-36047
Answer:
The sum of a 7-term geometric series = -36047
Step-by-step explanation:
We have 7-term geometric series if the first term is -11, the last term is -45,056, and the common ratio is -4.
So the GP is
-11, 44, -176,704,-2816,11264,-45056
Adding these terms we will get
Sum = -36047
Using equation:
We have
[tex]s_n=\frac{a(r^n-1)}{r-1}[/tex]
a = -11, r = -4 and n= 7
Substituting
[tex]s_7=\frac{-11((-4)^7-1)}{-4-1}=-36047[/tex]
The sum of a 7-term geometric series = -36047