Respuesta :
Use the Pythagorean theorem( a squared+b squared= c squared) to get the separate segments of FD. 16+5= 21. Your answer is C, 21 cm.
Answer:
(C) 21 cm
Step-by-step explanation:
It is given that AEBG is a kite in which AE=AG=20cm and EB=BG=13 cm and FG=24 cm.
Now, from ΔCBG, we have
[tex](BG)^2=(CG)^2+(CB)^2[/tex]
[tex](13)^2=(12)^2+(CB)^2[/tex]
[tex]169-144=(CB)^2[/tex]
[tex]25=(CB)^2[/tex]
[tex]5 cm=CB[/tex]
Also, from ΔACG, we have
[tex](AG)^2=(CG)^2+(AC)^2[/tex]
[tex](20)^2=(12)^2+(AC)^2[/tex]
[tex]400-144=(AC)^2[/tex]
[tex]256=(AC)^2[/tex]
[tex]16 cm=AC[/tex]
Now, the length of the other diagonal is given as:
[tex]AB=AC+CB[/tex]
Substituting the given values, we have
[tex]AB=16+5[/tex]
[tex]AB=21 cm[/tex]
Therefore, the value of the other diagonal is 21 cm, hence option C is correct.
