Respuesta :

x = 0
(what i first thought)
lets figure this out.
---------------------------
0*2 - 6*0 + 12 = 0
0 - 0 + 12 
12
this is sadly wrong.
--------------------------- 
What we need to do, is somehow, make the first two parts of the equation (x2 - 6x) equal -12 to counter the +12.
------------------------------------------------------------------------------------------------------
maybe x = -2?
------------------------
-2 * 2 - 6 * -2 + 12 = 0
-4 - 6 * -2 + 12 = 0
-4 - -12 + 12 = 0
8 + 12 = 20
this is also wrong.
---------------------------------
As we saw in the third step, we were close to getting -12.
Lets try -4.
------------------------------------------------------------------------------
-4 * 2 - 6 * -4 + 12 = 0
-8 - 6 * -4 + 12 = 0
-8 - -24 + 12 = 0
16 + 12 = 28
Drat, not close enough.
------------------------------------------------------------------------------
Lets try now -3
------------------------------------------------------------------------------
-3 * 2 - 6 * -3 + 12 = 0
-6 - 6 * -3 + 12 = 0
-6 - -12 + 12 = 0
-24 + 12 = -12
-------------------------------------------------------------------------------
now i a frustrated.
by now i realized i was doing it all wrong and now have the answer
-------------------------------------------------------------------------------
x = 3.
Refine x * 2 - 6 * x + 12 ---> -4x + 12
             ( 2 - 6 = -4) (x's combine)
-4x + 12
subtract 12 from both sides
-4x - 12 + 12 = 0 - 12
Refine
-4x = -12
divide both sides by 4
-4x / -4 = -12 / -4
x = 3

Answer:  The required roots of the given quadratic equation are

[tex]x=3+\sqrt3i,~~~3-\sqrt3i.[/tex]

Step-by-step explanation:  We are given to find the roots of the following quadratic equation :

[tex]x^2-6x+12=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

We will be using the method of completing the square to solve the given quadratic equation (i).

From equation (i), we have

[tex]x^2-6x+12=0\\\\\Rightarrow (x^2-2\times x\times3+3^2)+12-3^2=0\\\\\Rightarrow (x-3)^2+12-9=0\\\\\Rightarrow (x-3)^2+3=0\\\\\Rightarrow (x-3)^2=-3\\\\\Rightarrow x-3=\pm\sqrt{-3}\\\\\Rightarrow x-3=\pm\sqrt3i\\\\\Rightarrow x=3\pm\sqrt3i.[/tex]

Thus, the required roots of the given quadratic equation are

[tex]x=3+\sqrt3i,~~~3-\sqrt3i.[/tex]