Respuesta :
Answer: Its factored form will be
[tex]6n(n-1)(n^2-3n-3)[/tex]
Step-by-step explanation:
Since we have given that
[tex]6n^4-24n^3+18n[/tex]
So, we need to factor ,
[tex]6n(n^3-4n^2+3)[/tex]
Now,
[tex]\text{Let }p(n)=n^3-4n^2+3[/tex]
Now, by hit and trial method, we put n=1,
[tex]p(1)=1^3-4\times1^2+3=1-4+3=1-1=0[/tex]
[tex]n=1\\n-1=0[/tex]
So, n-1 is also factor of p(n).
Now,
[tex]\frac{n^3-4n^2+3}{n-1}=n^2-3n-3[/tex]
So, its factored form will be
[tex]6n(n-1)(n^2-3n-3)[/tex]
Answer:
6n(n^3-4n^3+3) or C on e2020
Step-by-step explanation:
The GCF is 6n. divide all the terms by 6n.