Respuesta :
Given that the area is defined by the function
[tex]A=38x-x^2[/tex]
For maximum area,
[tex] \frac{dA}{dx} =0 \\ \\ 38-2x=0 \\ \\ 2x=38 \\ \\ x=19[/tex]
Therefore, the width that gives the maximum area is 19 feet.
The maximum area is given by
[tex]A=38(19)-(19)^2 \\ \\ =19(38-19) \\ \\ =19(19)=361 \ square \, feet.[/tex]
[tex]A=38x-x^2[/tex]
For maximum area,
[tex] \frac{dA}{dx} =0 \\ \\ 38-2x=0 \\ \\ 2x=38 \\ \\ x=19[/tex]
Therefore, the width that gives the maximum area is 19 feet.
The maximum area is given by
[tex]A=38(19)-(19)^2 \\ \\ =19(38-19) \\ \\ =19(19)=361 \ square \, feet.[/tex]
Answer:
width = 19 ft; area = 361 ft2
Step-by-step explanation: