Respuesta :

In order to get the a,b,c values for the quadratic formula we need to put the equation in standered form: 
[tex]ax^2+bx+c=0 [/tex]

We can do this by subtracting 1 from both sides: 
[tex]11x^2-4x-1=1-1 [/tex]

Now we have: 
[tex]11x^2-4x-1=0 [/tex]

a=11, b=-4, c=-1 

Now you use the quadratic formula: 
[tex] \frac{-b_-^+ \sqrt{b^2-4ac} }{2a} [/tex]

Now plug in the values of a,b,c
[tex] \frac{-(-4)_-^+ \sqrt{(-4)^2-4(11)(-1)} }{2(11)} [/tex]

Simplify it: 
[tex]\frac{4_-^+ \sqrt{60} }{22} [/tex]

You can further simplify the given equation to get a final answer of: 
[tex]x= \frac{2}{11}+ \frac{1}{11} \sqrt{15} [/tex]

or
 [tex]x= \frac{2}{11}+ \frac{-1}{11} \sqrt{15} [/tex]