Respuesta :

We need to perform division of 2y2 + 8 by 2y + 4. To solve this problem, we need to use the long method of division such as shown below:
               y    - 2       r. 16  
            -----------------------
2y+4 √2y2 + 0y + 8
          - (2y2 + 4y)
            ----------------------- 
               0y2 - 4y  + 8
                      - (-4y  -8)
             -----------------------
                        0y  + 16

The answer is y-2 + (16/(2y+4)) on which the remainder is 16 / (2y+4).

Answer:

Quotient = y - 2

Remainder = 16

Step-by-step explanation:

We need to divide 2y² + 8 by 2y + 4

[tex]\implies \frac{2y^2+8}{2y+4}[/tex]

Now, the division of this shown step wise in the image attached below :

Hence, we get Quotient = y - 2

Remainder = 16

Verifying the result : (2y + 4)×(y - 2) + 16

= 2y² - 4y + 4y - 8 + 16

= 2y² + 8 = Dividend.

Hence, The solution is verified.

Ver imagen throwdolbeau