A parabola is represented by the equation y = x2 + 6x − 17. The x-intercepts of the parabola are and . The y-intercept of the parabola is

Respuesta :

tonb
The y intercept is where x=0. Put that in the equation and find:

y = 0 + 0 - 17 = -17.

Answer:

The x-intercept is:    

[tex]x=-3+\sqrt{26},\ x=-3-\sqrt{26}[/tex]

and y-intercept is:

[tex]y=-17[/tex]

Step-by-step explanation:

x-intercept--

The x-intercept is the x-value of the point where the y-value is zero.

y-intercept--

The y-intercept is the y-value of the point where the x-value is zero.

The parabola is given by the equation:

             [tex]y=x^2+6x-17[/tex]

when y=0

we have:

[tex]x^2+6x-17=0[/tex]

The solution of the quadratic equation of the type:

[tex]ax^2+bx+c=0[/tex]

is given by:

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Here a=1, b= 6 and c= -17

Hence,

[tex]x=\dfrac{-6\pm \sqrt{6^2-4\times 17\times 1}}{2}\\\\x=\dfrac{-6\pm \sqrt{36+68}}{2}\\\\x=\dfrac{-6\pm \sqrt{104}}{2}[/tex]

[tex]x=-3+\sqrt{26},\ x=-3-\sqrt{26}[/tex]

Also, when x=0

we have:

[tex]y=-17[/tex]

Hence, the x-intercept is:

 [tex]x=-3+\sqrt{26},\ x=-3-\sqrt{26}[/tex]

and y-intercept is:

   [tex]y=-17[/tex]