Respuesta :
Answer:
[tex]12a^3 + 2a^2 + 23a +18[/tex]
Step-by-step explanation:
Given: We have given two expressions: (3a + 2) and [tex](4a^2 - 2a + 9)[/tex]
We have to find the product of these expressions.
(3a + 2)([tex]4a^2 -2a + 9)[/tex]
Now we have to use the distributive a(b + c) = a.c + a.c
3a([tex]4a^2 -2a + 9) + 2(4a^2 -2a + 9)[/tex]
= [tex]12a^3 - 6a^2 + 27a + 8a^2 - 4a + 18[/tex]
Now we can combine the like terms and simplify.
= [tex]12a^3 -6a^2 + 8a^2 + 27a - 4a + 18[/tex] [-6a^2 + 8a^2 = 2a^2]
= [tex]12a^3 + 2a^2 + 23a + 18[/tex] [27a -4a = 23a]